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Provided that there is no theoretical frame for complex engineered systems (CES) as yet, 

this paper claims that bio-inspired engineering can help provide such a frame. Within CES bio-

inspired systems play a key role. The disclosure from bio-inspired systems and biological 

computation has not been sufficiently worked out, however. Biological computation is to be 

taken as the processing of information by living systems that is carried out in polynomial time, 

i.e., efficiently; such processing however is grasped by current science and research as an 

intractable problem (for instance, the protein folding problem). A remark is needed here: P 

versus NP problems should be well defined and delimited but biological computation problems 

are not. The shift from conventional engineering to bio-inspired engineering needs bring the 

subject (or problem) of computability to a new level. Within the frame of computation, so far, 

the prevailing paradigm is still the Turing-Church thesis. In other words, conventional 
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engineering is still ruled by the Church-Turing thesis (CTt). However, CES is ruled by CTt, 

too. Contrarily to the above, we shall argue here that biological computation demands a more 

careful thinking that leads us towards hypercomputation. Bio-inspired engineering and CES 

thereafter, must turn its regard toward biological computation. Thus, biological computation 

can and should be taken as the ground for engineering complex non-linear systems. Biological 

systems do compute in terms of hypercomputation, indeed. If so, then the focus is not 

algorithmic or computational complexity but computation-beyond-the-Church-Turing-barrier. 

Computation at the biological scale is carried out as the emergence of properties, attributes, or 

systems throughout chemical processes wherein the usual serial, parallel, and distributed 

processing occupy a less relevant importance than expected. We claim that we need a new 

computational theory that encompasses biological processes wherein the Turing-Church thesis 

is but a particular case. 

 

Key words: Biological computation, bio-inspired computation, complex engineered 

systems, complexity, hypercomputation. 

1 Introduction 

We need a theoretical frame for complex engineered systems (CES). Even though in 

the past there have been disciplines with just medium-range theories and engineering 

has borrowed its theoretical presuppositions from physics and mathematics, mainly, 

we can reasonably think that once the shift is produced from classical and 

conventional engineering towards CES the situation can and may change. 

The core problem concerning CES is related to the processing of information, 

since the basis of CES is not matter and energy any longer as it is indeed the case for 

conventional and classical engineering. Rather, CES is concerned with information 

and computational problems. If so, biological computation emerges as the ground 

linking bio-inspired engineering together with CES for what is really at stake is the 

understanding of non-linear phenomena, behaviors and dynamics. 

In computational terms, the Church-Turing thesis (CTt) is the prevailing 

paradigm. P versus NP problems can be viewed as the result of computation as a 

Turing machine and the possibilities and constraint that poses a Turing machine. 

However, once the interest turns to biological systems the validity or extension of the 

CTt becomes limited. Hypercomputation emerges as both the basis and framework 

for the understanding of biological systems. We claim that biological systems 

compute in terms of hypercomputation. 

We shall argue in favor of a road to CES through four arguments, thus: first we 

discuss the standard interpretation of the Church-Turing thesis and move towards the 

contributions of Turing himself for understanding life and computation. Secondly, a 

short study of the P versus NP problems is necessary in order to clear up the road. 

Consequently we claim that life does not compute deterministically and that´s why 

we need to move to a more fundamental level, namely hypercomputation. This is 

precisely the third argument. In biological systems the processing of information 

happens in a radically different way as in conventional computation. Thereafter, as a 

final argument we encounter a complexification of computation that allows us to 
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better grasp what living systems do vis-à-vis information. The road, we believe to 

CES is widely open. At the end, a few concluding remarks are formulated. 

2 The Church-Turing Thesis, Revisited 

The Church-Turing thesis (CTt) arises in the midst of a physical paradigm. Thereafter 

its claim about determinism, top-down computation and the von Neumann 

architecture become necessary references herein. However, it should be mentioned 

that Turing himself never said the Turing machine was the model that could express 

all possible computations. That saying has been attributed to Turing and is truly a sort 

of uncritical claim in the community of scientists and academicians. 

Indeed, together with the traditional Turing machine and consequently the 

importance of the CTt, others forms of Turing machines must be recognized and 

worked out, namely choice-Turing machines (c-machines), oracle-Turing machines 

(o-machines), and unorganized-Turing machines (u-machines). These three kinds of 

Turing machines succeed in overcoming the computational power of the universal 

Turing machine throughout the interaction of c-machines and o-machines, and via 

evolution as it is the case with u-machines [9]. As a consequence, the distinction must 

be made between the strong interpretation of the Turing machine and the very thesis 

itself.  

Radical as it is, some argue that the Turing machine theory is not so much wrong 

as irrelevant [18]. The possibility of the relevance of the theory entails a revision of 

the theory which is not just possible but compulsory. Such a revision however goes 

along the way opened by Turing himself. 

The CTt is the clear and straightforward claim that computing is a relevant 

physical process. Therefore, the distinction is made between the entering program, 

the very process of computation which happens as it is in and as a black closed box, 

and the output which is the translation of the binary Boolean program that enters 

early on. Living systems do not process information in this way, at all. 

Indeed, for a living system processing information is one and the same process 

and dynamics as living. And in processing information her life is ultimately at stake. 

Were the processing of information a black closed box would then sooner be the 

living system at risk if not peril. 

Engineering the processing of information of living systems is a matter of pride 

and prestige from a scientific and academic point of view, but also a matter of 

survival from an evolutionary standpoint. For if we cannot understand what living 

systems do for living a little favor will do scientists and engineers to the ongoing 

bottle-neck situation of nature and mankind. CES is ruled by the CTt, though. 

In order to fully understand the processing of information of living systems a 

twofold way opens up, thus: either both the possibilities and constraints of the c-

machines, the o-machines and the u-machines, or shifting the conventional universal 

(i.e. ‘general purpose machine’) Turing machine. The more efficient road taken by 

the community of scholars, researchers and theoreticians was clear enough: 

hypercomputation [5]. The core reason is: living systems are learning systems, and 

thereafter adaptive and evolving systems. If so, the question becomes not just 

improving the conventional universal deterministic Turing machine (via, f.i., the o- u, 
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and c-machines) but transforming the very Turing machine. That is exactly what 

hypercomputation is about [29]. 

3 A Brief Consideration: P and NP Problems 

While the theory of computation deals with distinguishing computable problems from 

non-computable ones within the CTt context, the (computational) theory of 

complexity is occupied, in the same framework, with determining the necessary 

resources to achieve the computation it is concerned with. This means that the theory 

of complexity is concerned with computable problems and how efficiently they can 

be solved. Thus, computability and complexity are to be seen as the two hardcore 

problems of the theory of computation. 

Now, within the theory of complexity two central problems are to be 

differentiated, namely those that can be solved with accuracy in a polynomial time 

throughout a deterministic Turing machine (P problems a.s.a. easy problems) as well 

as those that can be solved in an approximate way, in a polynomial time too, 

throughout a non-deterministic Turing machine (NP problems, or difficult problems) 

[31]. The problems that require a non polynomial time in order to be solved exactly 

are known as intractable problems [13]. 

Provided that life can be calculated algorithmically (i.e. via a Turing machine), it 

should become clear that life should not be understood in terms of P problems. Is life, 

therefore, an NP problem? The answer to this question –one more time: in terms of 

limits of a Turing machine, is a rotund: yes [20]. For, indeed solving the problem 

concerning life is something that cannot be carried out in precise or accurate terms. 

Besides, when looking at the models for solving biologically computational 

motivated problems
1
 life does not solve problems in a deterministic way; life does 

not, in any case, have a unique answer but a space of solutions. 

However, such a description of life is incomplete not to mention incorrect. For, on 

the one hand the way biological systems process information appears to resist an 

explanation in terms of algorithms and, on the other hand, the problems that concern 

life are not clearly defined and/or delimitated as it is indeed the case for NP 

problems. Understanding life entails, thereafter, carrying on computation at the next 

level, namely hypercomputation. This is exactly the kind of discussions that lie at the 

center of biological computation. 

4 The Core: Biological Computation 

Biological computation refers to the fact that biological systems carry out 

computations on their own in the midst of their natural environment [22]. In other 

words, biological computation has to do with processing information that is naturally 

carried out by living organisms. This idea is closely related to the fact that in general 

complex systems carry out computations [21]. Examples run from biochemical to 

                                                           
1 We refer here to the work on metaheuristics biologically motivated (based on populations) [31]. The most 

conspicuous cases are evolutionary computation, swarm intelligence, artificial immune systems, and 

membrane computing. 
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bio-molecular systems such as DNA and RNA passing through the gene assembly in 

single-celled organisms or the capacity of the immune system to adapt and respond in 

mammals on to the dynamics of development and evolution. Therefore, it is not a 

sheer and useful metaphor extracted from biology that is used here as a source of 

inspiration in order to solve computationally complex systems in the frame of the 

sciences of computation (which is, for instance, the case for bio-inspired 

computation). It is neither the case about using computers to store, manipulate, 

integrate or analyze experimental biological data (which is rather the interest that 

have bioinformatics and the mainstream of computational systems biology). Rather, it 

is here the case of understanding computation as a truly fundamental phenomenon –

beyond the very sense of the universal Turing machine that crosses our current 

computing, physical, and biological systems including social systems. 

In biological systems, the processing of information happens in a radically 

different way as it is conceived by the current theory of computation [32]. Whereas 

digital computers based on the Turing machine and on the Von Neumann architecture 

make use of complex processors capable of carrying out complicated tasks in a 

sequential form [27], computation in biological systems emerges in a coordinate and 

de-centralized interaction of elements that are relatively simple such as, f.i., 

molecules, cells, organisms [7], [28]. This means that information that comes out 

from computation is not stored in any particular system but it manifests in the global 

configuration of the system. In the same tenure, the mechanisms by which 

computation is carried out are neither to be found nor  represented in an explicit form 

but, instead, emerge from non-linear interactions of the elements that make up the 

system. 

The large majority of computational models and architectures that are biologically 

motivated fall within the frame of the strong Church-Turing thesis and match - not 

without a big merit, to leveling the computational power of the Turing machine. 

Examples can be found in membrane computation [24], the assembling of genes [16], 

cellular computation [28], cellular automata [26], and DNA computation [15]. The 

works that from a theoretical standpoint seek to solve problems that are currently 

considered as non-computable are much less common – where usually the referent of 

the non-computable problem is the halting Turing problem. Some of these proposals 

are based on cellular automata, Turing evolving machines [10], analog neural 

networks [11] as well as on accelerated P systems [4]. 

The latter has meaningful implications for theoretical computation and yet it is not 

successful in expressing clearly the problem concerning biological computation. On 

the one hand, because processes such as the immune defense system, development or 

adaptation are clearly non-algorithmic; considering the opposite would be as if we 

thought that the Turing machine is capable of computing anything that is computable, 

including even life. On the other hand, because biological systems process 

information in real time and for living systems the problem concerning the Turing 

halting problem ceases to be a central subject [8]. Accordingly, biological 

computation is necessarily and unavoidably motivating a re-definition of computation 

and computability. 

Every known biological system processes information on the molecular scale. 

Biochemical processing of information is characterized by being tolerant to failure, it 
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is robust, resilient, self-organized, adaptive, a-synchronic, de-centralized, and 

evolving [6]. All these features, desirable in and characteristic of CES are far from 

being rightly understood, formalized and harnessed from the computational point of 

view. CES, we argue, depends directly from the complexification of computation, 

whose most salient feature is in the foreseeable future biological computation. 

The advances and interests nonetheless, there is no consensus among the scientific 

community concerning whether biological systems process information or not. There 

are some researchers who in the context of computational intelligence, soft 

computation or the design of metaheuristics take as inspiration biology as a source for 

solving engineering-like problems or use computational tools on a biological plane 

without realizing whether the underlying phenomenon is essentially computational or 

not (see, for instance, [12], [23], [3]). Others simply do not accept the fact that nature, 

and particularly living systems, process information, except as a metaphor [3], [30]. 

Finally, there are some others who have begun to assess openly that nature, and life in 

particular, do indeed process information [2], [6], [16], [19], [22], [25], [34]. There 

are some who have even come to claim that computation is an essential (= 

fundamental) feature for life to be [6], [21], [33]. 

Biological computation arises in the frontier of spearhead science and research in 

the world and yet it is far from being fully understood and accepted [30]. In fact, the 

main efforts that link biologists and computing scientists have been oriented so far in 

different directions to those from biological computation. Understanding how life 

processes information, i.e. how it computes will allow us to understand biology in 

more unified way [22] while widening up our conception about what it really means 

“computation” [16]. Such an understanding will also have a great impact in the way 

how engineering and a number of disciplines work and think. 

5 The Complexification of Computing and Complex 
Engineered Systems  

The Turing machine does not describe all possible computations but only those that 

are effectively computable – that is, those that are computable via mechanic or 

algorithmic means. More exactly, a Turing machine is related to an automatic 

solution of mathematical computable functions. Algorithmic computation is by 

definition closed in the sense that nothing enters or comes out during computation 

[11], [14]. Hence, the evolution of computation has consisted so far, in general terms, 

in storing and processing algorithmic procedures. The miniaturization of devices, the 

emergence of new paradigms in programming, fields such as parallelism or massive 

parallelism and the contributions of classic artificial intelligence to the sciences of 

computation point exactly in this direction. 

    However, how and when does the processing of information take place is 

something that cannot be restricted to the plane of mathematical computable 

functions. And it cannot be limited, not even, to the mathematics and logics in 

general. It becomes then evident that the definition of what is, and is not, computable 

depends exactly on the model of computation chosen and, by extension, that there is 

no a unique model of computation. Moreover, not every model of computation must 

be necessarily equivalent to a universal Turing machine.  
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     New models of computation haven been set out or suggested that extend the 

power of algorithmic computation – a conspicuous case being interactive 

computation [14]. In any case, all the best contributions to new models come from 

physics and biology. Natural computation and artificial life have contributed 

enormously to the shifting of the traditional understanding of what it means 

computing. 

In contrast to artificial intelligence, artificial life did not focused on the prevailing 

computational paradigm but it set out the need for formulating and developing a new 

paradigm within computation more accordingly to its natural biological counterpart 

[17]. Not without reason, the search and construction of a computational theory of 

biological systems became one of the key open most important problems on the field 

[1]. Working throughout synthesis, i.e. synthesizing, building from bottom up, de-

centralized processing and vastly parallel processing of information and ideas about 

emergence and self-organization are but some of the fundamental contributions that 

artificial life has made onto the sciences of complexity and CES. Moreover, many of 

the advances so far in unconventional computation as wells as in bio-inspired 

engineering and biological computation have been motivated by the very philosophy 

of artificial life. 

The complexification of computation comes then from two different directions 

that are just beginning to converge: one is hypercomputation, and the other is 

biological computation. The idea, which is a scandal for tradition, is that computing 

beyond the strong CTt matches perfectly with the idea according to which computing 

life goes far beyond a sheer computationalist view. 

Surely the most important contribution of artificial life (and of a number of other 

closely related fields such as natural computation, cellular computation or synthetic 

biology) to the theoretical framework of CES is not so much on the plane of 

metaheuristics and bio-inspired computation as, more deeply and solidly, in the 

works with biological computation. 

The core of CES cannot be unlike classical and conventional engineering the 

simple manipulation and transformation of matter and of the sources of energy to 

benefit mankind. Even though they still play an important role in engineering and 

science as yet, the axis is moved toward information and the processing of 

information. As of today, we argue understanding and explaining the complexity of 

engineering-like systems will depend directly and proportionately on the very 

complexification of computation. As it has been said, such a complexification is 

grounded on hypercomputation and biological computation. 

6 Concluding Remarks 

The most important scientific, philosophical and cultural meaning of CES has to do 

with both understanding and engineering complex systems. As it is well known, the 

best way to understand any problem consists in building it. Therefore, designing, 

engineering and producing become more relevant than ever when facing complex 

systems. To be sure, the most complex systems ever on earth are living systems. 
Within the frame of computational sciences, a system can be named as complex 

according to how it processes information. Living systems can be easily recognized 
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as the ones that best and most process information. This is the reason why we argue 

here that biological computation is to be taken as the road to CES in general and, 

particularly, as the theoretical framework for CES. 

Computation for living beings is a question of life or death. Therefore, 

computational sciences together with engineering must enrich or enlarge their rods 

and concepts. Biological computation, hypercomputation, complex computations, 

metaheuristics, biochemical processes, and some non-classical logics emerge as new 

tools and explications for what a living being is and can do to adapt and survive in 

nature. We encounter here new horizons for research and work. 
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